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(57) ABSTRACT

This invention relates, e.g., to a method for differentiating
mammalian (e.g., human) pluripotent stem cells (PSCs) into
smooth muscle-like cells (SMLCs) in vitro, comprising a)
plating a single-cell suspension of PSCs that are smaller than
50 um at a seeding concentration of about 5x10* cells/cm?>-
about 1x10° cells/cm® onto a suitable surface, and culturing
the cells under conditions which prevent the PSCs from
aggregating and induce differentiation of the PSCs into
vasculogenic progenitor cells; b) harvesting the cultured
cells of step a) and separating them into a single cell
suspension of cells that are smaller than 50 pum; and c)
plating the single cell suspension of step b) at a seeding
concentration of about 1x10* cells/cm?-about 5x104 cells/
cm® on a suitable surface, and culturing the cells in a
differentiation medium that is supplemented with platelet-
derived growth factor BB (PDGF-BB) and transforming
growth factor-beta 1 (TGF p1), for a sufficient period of time
to allow the vasculogenic progenitor cells to mature into
SMLCs. In one embodiment of the invention, the cells from
step ¢) are further subjected to a shear force of at least 1
dyne/cm? for a time period sufficient to enhance differen-
tiation, maturation and/or functionality of the cells.

25 Claims, 11 Drawing Sheets
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SMOOTH MUSCLE-LIKE CELLS (SMLCS)
DERVIDED FROM HUMAN PLURIPOTENT
STEM CELLS

This application is a National Stage of PCT/US2011/
026294 filed Feb. 25, 2011, which claims the benefit of the
filing date of U.S. Provisional Patent Application 61/308,
014, filed Feb. 25, 2010, both of which are incorporated by
reference in their entirety.

BACKGROUND INFORMATION

The vascularization of tissue constructs remains a major
challenge in regenerative medicine. Without its own blood
supply, an engineered construct relies mainly on diffusional
oxygen supply, which can only support a thin layer of viable
tissue. Therefore, vascularization of a tissue construct is
crucial for its successful implantation, survival, and integra-
tion with the host tissue. The formation of mature and
functional vascular networks requires interaction between
endothelial cells (ECs) and vascular smooth muscle cells
(v-SMCs). During early vascular development, ECs line the
vessel wall and organize into an immature vasculature. To
further stabilize these nascent vessels, ECs secrete platelet-
derived-growth-factors (PDGF) to induce the differentiation
of specialized mesenchymal stem cells (MSCs) into peri-
cytes in capillaries or SMCs in larger vessels. At this later
stage, transforming growth factor-beta 1 (TGF-p1) regulates
vessel maturation by inducing v-SMC differentiation and the
generation of extracellular matrix (ECM) molecules, such as
collagen, fibronectin, and Laminin. Embedded within this
ECM, v-SMCs provide physical support to the vasculature
and aid in the maintenance of endothelial viability. This
process of vascular morphogenesis involving ECs interact-
ing with both the ECM and v-SMCs has been widely studied
in vitro using Matrigel assays. When grown on Matrigel, a
basement membrane matrix enriched with laminin, ECs and
v-SMCs interact to form capillary-like structures (CLSs)
that resemble tube formation in vivo. Thus, v-SMCs are key
components in engineering vascularized tissue.

One major limitation of this therapeutic approach has
been the lack of a reliable source of v-SMCs. Since v-SMCs
isolated from patients are usually derived from diseased
organs that have limited proliferative capacity and reduced
collagen production, they have impaired mechanical
strength and cannot support vascular function. Alternatively,
bone marrow-derived MSCs have been used to engineer
small-diameter vessel grafts and blood vessels which are
stable and functional in vivo. Adipose tissue and neural crest
tissue also contain populations of multipotent cells that can
be differentiated into functional v-SMCs. Another promising
source of v-SMCs is human embryonic stem cells (hESCs),
which are pluripotent, have high proliferative capacity,
exhibit low immunogenicity, and have been shown to repair
ischemic tissues and restore blood flow (Sone et al. (2007)
Arterioscler Thromb Vasc Biol 27, 2127-34). Studies dem-
onstrating the derivation of v-SMCs from embryonic or
pluripotent induced stem cells (human or mouse) have
utilized various approaches to guide differentiation—such as
coculture on OP9 feeder layer or retinoic acid supplemen-
tation—and to purify derivatives by sorting for specific
vascular progenitors or mature markers, selecting for stable
expression of SMC promoter, or isolating the outgrowth of
embryoid bodies (EBs). In previous studies, we have dem-
onstrated that the derivation of vascular lineages from
hESCs can be achieved by administration of angiogenic
growth factors, either by monolayer, two-dimensional (2D)
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2

differentiation protocol, or by isolation of vascular progeni-
tor cells or CD34™ cells from 10-day old EBs, followed by
selective induction into either endothelial like cells (using
vascular endothelial growth factor; VEGF) or smooth-
muscle-like cells (SMLCs; using PDGF-BB).

There is a need to develop simple procedure that results
in highly purified cultures of SMLCs which are mature
enough to exhibit characteristics such as contractile pheno-
types and the ability to support vasculature in vitro.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a protocol for the derivation of SMLC from
hESCs.

FIG. 2 shows the characterization of hES C-derived
SMLCs. Human ESC-derived SMLCs were analyzed for the
expression of specific SMCs markers, including SMA, cal-
ponin, SM22 and SM-MHC, using flow cytometry.

FIG. 3 shows ECM production and secretion. FIG. 3A.
Expression levels of fibronectin and collagen were examined
in hESC-derived SMLCs, and v-SMCs compared to undif-
ferentiated hESCs, using real-time RT-PCR; FIG. 3B.
Immunofluorescence staining further demonstrated the
expression pattern of fibronectin and collagen in hESC-
derived SMLCs and v-SMCs. FIG. 3C. Higher magnifica-
tion images (of squares in B) demonstrate the intracellular
expression (arrowheads) and the secretion (arrows) of
fibronectin from hESC-derived SMLC, while fibronectin is
expressed intracellular in the v-SMC (arrowheads). Signifi-
cance levels were set at: # p>0.05 and **p<0.01. Scale bar
is 100 pm.

FIG. 4 shows contractility of hESC-derived SMLCs.
Quantitative contractility of hESC-derived SMLCs and
human aorta v-SMCs. Significance levels were set at: #
p>0.05 and **p<0.01.

FIG. 5 shows that human ESC-derived SMLCs support in
vitro vascular network formation and stabilization. FIG. SA.
Fluorescent microscopy images of viable CLS formed on
Matrigel following seeding with ratios of 100:0, 60:40,
40:60, 20:80, and 0:100 (EPCs:SMLCs). FIG. 5B. Meta-
morph analysis of CLSs revealed a significant increase of
mean tube length (i) and mean tube thickness (ii) and a
decrease in complexity (iii) as the ratio of EPC to SMLCs
decreased. Significance levels were set at: *p<0.05,
*#p<0.01, and ***p<0.001. Scale bar is 20 um.

FIG. 6. Organization of SML.Cs and EPC in CLS. EPCs
and hESC-derived SMLCs were dyed in green and red
(respectively) and seeded at ratio of 20:80 (EPCs:SMLCs)
on Matrigel. FIG. 6A. Representative image showing that
CLSs formed from both EPCs and SMLCs. FIG. 6B. Higher
magnification Z-stack confocal images (of the squares in A)
from top (i), middle (ii), and bottom (iii) show the outer
localization of SMLCs and the inner lining EPCs. Scale bar
is 100 pm.

FIG. 7 shows marker expression kinetics. Differentiating
hESCs were analyzed on day 6 and 12 using FACS and
real-time PCR for: A. KDR; B. PDGFRB; C. Neuropilin; D.
SMA; E. Ang-1; F. VE Cad; G. Flt-1.

FIG. 8 shows fibronectin and collagen production. Human
ESCs, human aorta v-SMCs, human aorta v-SMCs grown in
differentiation media, and hESC-derived SMLCs were ana-
lyzed for their collagen and fibronectin expression. Signifi-
cance levels were set at: # p>0.05 and *p<0.05. Scale bar is
100 p.m.

FIG. 9 shows time-lapse images of CLSs formation on
Matrigel. Within 12 hours, both EPCs only and 20:80
EPCs:SMICs formed in vitro CLSs on Matrigel. CLSs
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formed by EPC only became thinner over time (indicated by
arrowheads) and underwent apoptosis, collapsing into their
nodes after 48 hours of culture. However, CLSs formed with
both EPC and SMLC (20:80) were found to form thicker
tubes and stabilized after 48 hours (indicated by arrows).

FIG. 10 is a cartoon showing that the application of stress
to SMLCs can, under certain conditions, enhance the matu-
ration of the cells toward being SMCs.

FIG. 11 is a schematic illustration of a flow chamber that
can be used for evaluating the effect of shear stress on
vasculogenic cells.

DESCRIPTION

The present inventors describe a step-wise monolayer
protocol for differentiating mammalian, including human,
pluripotent stem cells (PSCs) into smooth muscle-like cells
(SMLCs) in vitro. The PSCs can be derived from any
suitable source. For example, they can be embryonic stem
cells (ESCs) or induced pluripotent stem cells (abbreviated
iPS cells or iPSCs). The method, which is simple, efficient
and reliable, allows for the efficient derivation of concen-
trated, highly purified, relatively mature SMLCs. The
derived SMLCs highly express specific smooth muscle
(SMC) markers, such as a-smooth muscle actin, calponin,
and SM22, and produce and secrete ECM components, such
as fibronectin and collagen. Importantly, and unexpectedly,
the SMLCs mature to the extent that, e.g., they express
relatively high levels of markers of mature SMCs, such as
smooth muscle heavy chain (SM-MHC), contract in
response to carbachol, and interact with endothelial progeni-
tor cells (EPCs) to support and augment capillary-like
vasculature in vitro. The Examples herein present in vitro
tubulogenesis assays which show that human ESC-derived
SMLCs interact with human endothelial progenitor cells
(EPCs) to form longer and thicker cord-like structures in
vitro. SMLCs derived by a method of the invention can
serve as a ready source for therapeutic vascular tissue
engineering.

This invention relates, e.g., to a method for differentiating
mammalian pluripotent stem cells (PSCs) into smooth
muscle-like cells (SMLCs) in vitro, comprising

a) plating a single-cell suspension of PSCs that are
smaller than about 50 um at a seeding concentration of about
5x10* cells/cm>-about 1x10° cells/cm® onto a suitable sur-
face, and culturing the cells under conditions which prevent
the PSCs from aggregating and which induce differentiation
of the PSCs into vasculogenic progenitor cells;

b) harvesting the cultured cells of step a) and separating
them into a single cell suspension of cells that are smaller
than about 50 um; and

¢) plating the single cell suspension of step b) at a seeding
concentration of about 1x10* cells/cm?-about 5x10* cells/
cm® on a suitable surface, and culturing the cells in a
differentiation medium that is supplemented with platelet-
derived growth factor BB (PDGF-BB) and transforming
growth factor-beta 1 (TGF 1), for a sufficient period of time
to allow the vasculogenic progenitor cells to mature into
SMLCs.

Optionally, the above method further comprises stretching
the cells from step c), by subjecting them to a shear force of
at least 1 dyne/cm? (e.g., at least 5 dyne/cm?® or at least 10
dyne/cm?) for a time period sufficient to enhance differen-
tiation, maturation and/or functionality of the cells. The
shear force may be exerted in a flow chamber such as that
shown in FIG. 11.
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In any of the embodiments of the invention that are
disclosed herein, the PSCs may be human PSCs (hPSCs);
the PSCs may be ESCs (e.g., hESCs); the PSCs may be
iPSCs (e.g., hiPSCs); and/or the SML.Cs may be vascular
SMLC (e.g., human vascular SMLCs).

In aspects of the invention, the single cell suspensions are
generate by a method that comprises trypsinizing the cells,
e.g. with a non-animal alternative for porcine Trypsin that is
a recombinant enzyme derived from microbial fermentation
sold under the trademark TrypLE™ (Thermo Fisher Scien-
tific), or treating them with EDTA, and/or that comprises
sorting the cells through an about 40-um mesh strainer.

In aspects of the invention, the cells in step a) are plated
at a seeding concentration of about 5x10* cells/cm>-about
1x10° cells/cm?, for example at a seeding concentration of
about 5x10* cells/cm®-about 7x10* cells/cm?, or about
5x10* cells/cm®. The conditions in step a) that prevent the
ESCs from aggregating and induce differentiation of the
ESCs into vasculogenic progenitor cells may comprise cul-
turing the cells on an adhesive substrate (e.g., a collagen-
type-IV coated culture plate), in a differentiation medium
that comprises at least about 5% or at least about 10% serum
(v/v), for about 5 to 7 days.

In aspects of the invention, the cells in steps a) and c) are
cultured as a monolayer.

In aspects of the invention, the cells in step ¢) are plated
at a seeding concentration of about 1x10*-about 5x10*
cells/cm?, e.g. at a seeding concentration of less than about
5%x10% cells/cm?, less than about 2x10* cells/cm?, or about
1.25x10* cells/cm?. The concentration of PDGF-BB may be
about 5 ng/ml-about 50 ng/ml, e.g. about 10 ng/ml. The
concentration of TGF-f may be about 1 ng/ml-10 ng/ml.,
e.g., about 1 ng/ml.

In one aspect of the invention, the cells generated in step
c) are subjected to a stress of at least about 1 dyne/cm? (e.g.,
at least about 5 dyne/cm?® or at least about 10 dyne/cm?) for
at least about 30, 35, 40, 40, 44, 48, 52, 56 or more hours.

One aspect of the invention is a method for differentiating
human embryonic stem cells (ESCs) into human smooth
muscle-like cells (SMLCs) in vitro, comprising

a) plating a single-cell suspension of hESCs that have
been filtered through an about 40 pum strainer, to generate a
population of cells that are smaller than about 40 um, at a
seeding concentration of about 5x10* cells/cm®, onto a
collagen IV coated plate, and culturing the cells in a differ-
entiation medium that comprises about 10% serum, for
about 6 days,

b) harvesting the cultured cells of step a) and filtering
them through an about 40 um strainer to generate a single
cell suspension of cells that are smaller than about 40 um;
and

¢) plating the single cell suspension of step b) at a seeding
concentration of about 1x10* cells/cm?-about 2x10* cells/
cm? on a collagen IV coated plate, and culturing the cells in
a differentiation medium comprising about 10% (v/v) of
serum and that is supplemented with about 5-50 ng/ml of
PDGF-BB and about 1-10 ng/ml of TGF p1, for about 6
days.

Optionally, these steps may be followed by subjecting the
cells from step c) to a shear force of at least about 10
dyne/cm? for at least about 48 hours, in a flow chamber such
as that shown in FIG. 11.

Another aspect of the invention is a population (an
isolated population) of SMLCs produced by a method of the
invention. The cells may have been differentiated from PSCs
(e.g., hPSCs), including, for example, ESCs (e.g., hESCs) or
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iPSCs (e.g., hiPSCs); and/or the SML.Cs may be vascular
SMLC (e.g., human vascular SMLCs).

These cells may be identical to a population of human
smooth muscle cell (SMC), except, for example, that

a) in the SMLC population, only about 90-98% of the
cells express levels of the SMC markers, a-smooth muscle
actin (a-SMA), calponin, and SMC-SM22, at the same level
that they are expressed in human aorta v-SMCs; and/or

b) only about 50% of the cells express smooth muscle
myosin heavy chain (SM-MHC), compared to about 70% of
human aorta v-SMCs.

SMLC generated by a method of the invention exhibit
properties of matured v-SMCs. For example, they contract
in response to carbachol, and they interact with human
endothelial progenitor cells (EPCs) to support and augment
capillary-like structure (CLS) formation in vitro.

As used herein, the singular forms “a,” “an” and “the”
include plural referents unless the context clearly dictates
otherwise.

Throughout this application, the term “about” is used to
mean plus or minus 10% of the value. For example, about
2x10* cells includes 1.8x10%-2.2x10* cells. Ranges as used
herein include the endpoints of the range.

“Pluripotent” cells, as used herein, refers to stem that have
the potential to differentiate into any of the three germ
layers: endoderm (interior stomach lining, gastrointestinal
tract, the lungs), mesoderm (muscle, bone, blood, urogeni-
tal), or ectoderm (epidermal tissues and nervous system).
Pluripotent stem cells can give rise to any fetal or adult cell
type. However, alone they cannot develop into a fetal or
adult animal because they lack the potential to contribute to
extraembryonic tissue, such as the placenta.

Induced pluripotent cells (commonly abbreviated as iPS
cells or iPSC) are a type of pluripotent stem cell that is
artificially derived from a non-pluripotent cell, such as an
adult somatic cell, by forced expression of certain genes.
Methods for generating iPS cells are conventional and
well-known to those of skill in the art.

Embryonic stem cells (ESCs) are described as “undiffer-
entiated” when a substantial portion of stem cells and their
derivatives in the population display morphological charac-
teristics of undifferentiated cells, clearly distinguishing them
from differentiated cells of embryonic or adult origin. Undif-
ferentiated ES cells are easily recognized by those skilled in
the art, and typically appear in a microscopic view as cells
with high nuclear/cytoplasm ratios and prominent nucleoli.
Similarly, undifferentiated cells can be distinguished from
differentiated cells by the absence of lineage specific mark-
ers such as vascular endothelial growth factor receptor 2
(VEGFR?2), vascular endothelial cadherin (VE-cad) or plate-
let-endothelial cell adhesion molecule-1 (PECAM-1).

Often, hESCs are cultured with mouse embryonic fibro-
blasts (MEFs), a layer of feeder cells that nurture the hESCs
and keep them in undifferentiated state. In some embodi-
ments of the invention, endothelial progenitor cells (EPCs)
are sometimes expended on a feeder layer.

Much of the discussion in the present application is
directed to ESCs. However, other forms of PSCs, such as
iPSCs, are included.

In a method of the invention, in the first culture step,
individual undifferentiated ES cells are cultured in a manner
suitable for inducing differentiation into vasculogenic pro-
genitor cells.

Before being plated and cultured, the ESCs, which often
have been grown on a feeder layer, are treated with a suitable
reagent (e.g., digested with trypsin, such as TrypLE, or
treated with EDTA) to detach them from the culture plate,
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and are treated further to generate a single-cell suspension of
cells that are smaller than about 50 um (e.g., about 40 um or
smaller). The sizing step not only sorts the cells into cells of
a desired size, but also separates them from undesirable,
larger cells, such as feeder layer cells (e.g., MEFs) or EPC
that may be present in the culture. Sizing methods such as
filtration can also help to break up cells that have adhered to
one another, e.g., in ESC colonies. Without wishing to be
bound by any particular mechanism, it is suggested that
filtering ESCs also minimizes cell-cell contact, thereby
increasing vascular differentiation efficiency. Furthermore, it
is suggested that smaller cells are more proliferative than
larger ones, and are more likely to continuously differenti-
ate.

The sizing step can be accomplished by a variety of
methods. For example, various filtration, morphometry and/
or densitometry approaches can be used.

Methods of filtration are well known in the art, such as the
passage through a mesh, sieve, filter and the like. Filters can
comprise a fibrous matrix or porous material. Such filters
may be one of several commercially available filters includ-
ing but not limited to cell culture filters from Pall Life
Sciences (Ann-Arbor Mich., USA) or BD-Falcon (Boston,
Mass., USA). One suitable type of filter is a nylon mesh filter
having a pore size of 40 pm (Cell Cultureware, BD-Falcon,
Boston, Mass.).

“Morphometry” refers to the measurement of external
form, and can employ methods including but not limited to
2-D and 3-D image analysis. Advanced imaging analysis
software suitable for identification and isolation of cells
smaller than 50 um is commercially available to one skilled
in the art [see, for example, Metamorph Software (Universal
Imaging Corp., Downing Pa., USA), Imagic-5 (Image Sci-
ence Software, Berlin, Germany) and Stereologer (Systems
Planning and Analysis, Inc., Alexandria, Va., USA)] and can
be combined with well known light microscopy and flow
sorting techniques for selection of objects of desired external
characteristics (e.g. size) (for suitable apparatus see, for
example, U.S. Pat. No. 6,249,341 to Basiji et al).

“Densitometry” refers to measurement of the optical or
physical density of an object. Densitometric measurements
may be used to characterize and provide criteria for sepa-
ration and isolation of cells. Devices suitable for densito-
metric isolation of endothelial-like cells are, for example,
the MECOS-C1 blood cell densitometry analyzer (MECOS
Co., Moscow, Russia). Cells may also be separated by
sedimentation through a preparative density gradient such as
FICOLL™ or PERCOLL™ (Amersham Biosciences, Inc.
Piscataway, N.J. USA) (for exhaustive review of densito-
metric fractionation techniques, see Pertoft, H J Biochem
Biophys Methods 2000; 44:1-30). Thus, the present inven-
tion provides an easy and rapid approach to progenitor cell
generation and isolation. Previous methods of isolating such
progenitor cells have produced progenitor populations
which lack desirable proliferation capabilities, limiting their
practical application (Reubinoff, B E et al Nat Biotech 2000;
18:399-404, and Schuldiner, M et al PNAS USA 2000,
97:11307-312). The vasculogenic progenitor cells isolated
by the methods of the present invention are capable of
generating large numbers of identical cells by proliferation
through numerous cell doublings.

The undifferentiated ES cells utilized in the method of the
present invention can be mammalian embryonic stem cells
obtained from any suitable source, including fresh or cryo-
preserved embryonic cell masses, cells from in-vitro-fertil-
ized embryonic cell masses and/or cultured ES cell lines. In
the protocol illustrated in FIG. 1, the undifferentiated ESC
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are cultured cell lines, which have been propagated on
suitable feeder layers. The ES cells may be from any
mammalian source from which ES cells can be obtained.
These include, e.g., certain laboratory animals such as mice,
farm animals, sporting animals, and domestic animals or
pets. Non-human primates and humans are included. Much
of the present application is directed to the use of human
ESCs, but it is to be understood that other sources of ESCs
are included.

As used herein, the phrase “vasculogenic progenitor
cells” refers to a population of cells that can generate
progeny that are endothelial or smooth muscle precursors
(such as angioblasts) or mature endothelial or smooth
muscle cells, or hematopoietic precursor (such as erythroid
colony forming units and megakaryocytes) or mature blood
cells (such as erythrocytes and leukocytes). Typically, vas-
culogenic progenitor cells express some of the phenotypic
markers that are characteristic of the endothelial, smooth
muscle and hematopoietic lineages. Typically, they do not
produce progeny of other embryonic germ layers when
cultured by themselves in vitro, unless dedifferentiated or
reprogrammed. It will be appreciated that it is not implied
that each of the cells within the population have the capacity
of forming more than one type of progeny, although indi-
vidual cells that are multipotent vasculogenic progenitor
cells may be present.

As is shown, for example, in the Examples herein, dif-
ferentiation of individual undifferentiated ES cells can be
effected by culturing such cells on plates coated with an
adhesive substrate such as type IV collagen, laminin or
gelatin to prevent aggregation of the ES cells; seeding the
cells at a low plating density (at a seeding concentration of
about 5x10* cells/cm®-about 1x10° cells/cm?, for example
about 5x10* cells/cm®-about 7x10* cells/cm?, or about
5x10* cells/cm?); and providing differentiation medium that
contains no growth factors. In one embodiment, individual
undifferentiated ES cells are grown on type IV collagen-
coated plates (available from, for example, Cell Culture-
ware, BD-Falcon, Boston, Mass.). See the Examples section
for further description of conditions for differentiation of ES
cells.

As used herein, the term “differentiation medium” refers
to a suitable medium capable of supporting growth and
differentiation of the ES cells. Examples of suitable differ-
entiation media which can be used with the present inven-
tion include a variety of growth media prepared with a base
of alpha MEM medium (Life Technologies Inc., Rockville,
Md., USA) or Dulbecco’s minimal essential medium
(DMEM) supplemented with 10% FBS (HyClone, Logan,
Utah, USA) and 0.1 mM p-mercaptoethanol (Life Technolo-
gies Inc., Rockville, Md., USA). The cells generated in this
first culture step are a mixed population of cells, including
vasculogenic progenitor cells. Following a suitable amount
of time to generate a desirable number of vascular progeni-
tor cells (e.g., about 5-7 days), the cells are harvested,
trypsinized and sorted to generate a single-cell suspension of
cells that are smaller than 50 pum in size, by methods such as
those described above.

In a second round of differentiation, a single cell suspen-
sion of cells from the first round of culture is once again
plated onto plates coated with an adhesive substrate such as
type IV collagen, at a low seeding density. The adhesive
substrate helps prevent aggregation of the cells. The inven-
tors have found that a low plating density, of about 1x10*-
about 5x10* cells/cm?, (e.g., less than about 2.5x10* cells/
cm?; less than about 2.0x10* cells/cm?; about 1x10*-about
2x10* cells/cm?®; or about 1.25x10* cells/cm®)-results in
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effective differentiation of the vasculogenic progenitor cells
to SMLCs. Much of the discussion in this application is
directed to the differentiation into vascular smooth muscle or
vascular smooth muscle-like cells. However, it is to be
understood that a method of the invention can be used to
differentiate ESCs into any type of smooth muscle or smooth
muscle-like cell.

In this second differentiation step, the cells are again
cultured in a differentiation medium, but this time the
medium is supplemented with platelet-derived growth factor
BB (PDGF-BB) and transforming growth factor-beta 1
(TGF B1). In addition, in order to guide the differentiation of
the vasculogenic progenitor cells into vascular smooth
muscle-like cells rather than into endothelial cells (EC), it is
beneficial to use a high concentration of serum in the
medium. In embodiments of the invention, the serum con-
centration is higher than about 5%, higher than about 9%, or
higher than about 10% (v/v).

Under the culture conditions in this second round of cell
culture, the cells differentiate into SMLCs. A skilled worker
can readily determine the optimal time for this differentia-
tion to occur. For example, the cells can be incubated for 5-7
(e.g. 6) days.

Optionally, the SMLCs obtained from the second round of
culture can be treated further by applying shear stress and
“stretching” them, a process which enhances differentiation,
maturation and/or functionality of the cells. In this proce-
dure, the cells are exposed to a shear force of at least about
1 dyne/cm? (e.g., at least about 5 dyne/cm? or at least about
10 dyne/cm?) for a time period sufficient to enhance differ-
entiation, maturation and/or functionality of the cells. In one
embodiment of the invention, the exposure of the SMLCs to
a shear force is effected by using a flow chamber such as
illustrated in FIG. 11. SMLCs are cultured in a flow chamber
and are exposed to flow-induced shear stress for about 24
hours or about 48 hours. A closed-loop flow circuit circulates
sterile SMC-differentiation medium through the assembled
flow chamber, which inflicts a steady, laminar shear stress of
10 dynes/cm® acting upon the cells. Each experiment is
accompanied by a static control construct. Following about
a 24 hr exposure to shear stress the cells are removed from
culture and analyzed.

As is shown in the cartoon in FIG. 10, a treatment with
cyclic uniaxial strain at 1 Hz and 7% elongation of the cells
under appropriate conditions leads to the cells aligning
perpendicularly to the direction of strain; the cells exhibit a
healthy phenotype and appearance. A lower or higher %
elongation leads to either no alignment, or to alignment of
the cells perpendicular to the direction of strain, but the cells
appear stressed. That is, the cell morphology is distorted;
cell spread is substantially decreased; and the cells appear to
be on the verge of detaching. Under the 7% elongation
conditions, the optimal conditions appear to be about 48
hours of strain, with no growth factors or serum present in
the differentiation medium. Under these conditions, there is
an increase in SMA (a specific marker indicative of early
vascular smooth muscle cells) and calponin, as determined
by RT-PCR, and a decrease in SM-MHC, also as determined
by RT-PCR. It is expected that 48 hours of strain in the
presence of PDGF and TGF-f will lead to similar results.
These studies indicate that cyclic strain effectively induces
expression and organization kinetics of stress fibers, thereby
enhancing differentiation, maturation and functionality of
ES-derived vasculogenic cells.

Populations of smooth muscle-like cells produced by a
method of the invention are smooth muscle-“like” because,
although they are similar to, they are not identical to,
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naturally occurring populations of mature smooth muscle
cells. For example, the Examples herein show that in a
population of v-SMLC cells generated by a method of the
invention, only about 90-98% of the cells express levels of
certain SMC markers, such as a-smooth muscle actin
(a-SMA), calponin, and SMC-SM22, at the level that they
are expressed in human aorta v-SMCs. Furthermore, smooth
muscle myosin heavy chain (SM-MHC), which is a marker
for mature SMCs, is expressed in about 70% of human aorta
v-SMCs, but it is only expressed in abut 50% of v-SMLCs.
It is expected that with further minor refinements of a
method of the invention, including the introduction of the
“stretching” step, cells differentiated by a method of the
invention will eventually be much more similar to SMCs.

Nevertheless, the inventors show herein that v-SMLCs
produced by a method of the invention are unexpectedly
considerably more highly purified, at a higher concentration,
and at a more advanced level of maturity than cells differ-
entiated in vitro by other methods. In particular, the v-SM-
LCs exhibit a number of functional properties that are
characteristic of SMCs, such as those shown in FIGS. 3-6
herein. For example, v-SMLCs exhibit the ability to contract
in response to pharmacological drugs such as carbachol, and
they support avascular network (When allowed to interact
with human endothelial progenitor cells (EPCs), they sup-
port and augment CLS formation).

SMCLs and methods of the invention have a variety of
uses, which are discussed in U.S. Pat. No. 7,354,763, which
is incorporated by reference herein, particularly with regard
to those disclosures.

In the foregoing and in the following examples, all
temperatures are set forth in uncorrected degrees Celsius;
and, unless otherwise indicated, all parts and percentages are
by weight.

EXAMPLES
Example 1
Materials and Methods

Cell Culture

All cells were cultured in humidified incubators (37° C.)
in atmospheres maintained with 5 percent CO,.

Human ESCs.

Human ESC line H9 was grown (passages 15 to 40;
WiCell Research Institute, Madison, Wis.) on an inactivated
mouse embryonic fibroblast feeder layer (Globalstem, Rock-
ville, Md.) in growth medium consisting of 80 percent
ES-DMEM/F12 (Globalstem) supplemented with 20 percent
knockout serum replacement (Invitrogen, Carlsbad, Calif.)
and 4 ng/ml basic fibroblast growth factor (bFGF; Invitro-
gen), as previously described (Gerecht-Nir et al. (2003)
Laboratory Investigation 83, 1811-20). Human ESCs were
passaged every four to six days with 1 mg/ml of type IV
collagenase (Invitrogen). Media were changed daily.

Human v-SMCs.

Human aorta v-SMCs (ATCC, Manassas, Va.) served as
the control cell type and were grown in the specified ATCC
complete SMC growth medium, consisting of Kaighn’s
Modification of Ham’s F-12 Medium (F-12K Medium;
ATCCQ), 10 percent fetal bovine serum (FBS; Hyclone), 0.05
mg/ml ascorbic acid (Sigma-Aldrich, St. Louis, Mo.), 0.01
mg/ml insulin (Sigma), 0.01 mg/ml Transferrin (Sigma), 10
ng/ml sodium selenite (Sigma), 0.03 mg/ml Endothelial Cell
Growth Supplement (Sigma), HEPES (Sigma) to a final
concentration of 10 mM, and TES (Sigma) to a final
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concentration of 10 mM. Human v-SMCs were passaged
every three to four days with 0.25 percent trypsin (Invitro-
gen). Media were changed every two to three days.

Human EPCs.

Human umbilical cord EPCs isolated from outgrowth
clones, kindly provided by Dr. Yoder, Indiana University
School of Medicine, were expanded and used for experi-
ments between passages 3 and 10. For the current study,
EPCs were isolated from seven healthy newborns (three
females and four males; gestational age range, 38-40
weeks), pooled, expanded, and characterized according to a
previously established protocol by Yoder and colleagues,
and as we describe in details in our recent publication
(Hanjaya-Putra et al. (2009) J Cell Mol Med). Briefly, EPCs
were expanded in flasks coated with type I collagen (Roche
Diagnostics, Basel, Switzerland), in endothelial growth
medium (EGM; PromoCell Heidelberg, Germany) supple-
mented with 1 ng/ml VEGF, 45 (Pierce, Rockford, I11.), and
incubated in a humidified incubator at 37° C. in an atmo-
sphere containing 5% CO,. EPCs were passaged every three
to four days with 0.05% trypsin (Invitrogen, Carlsbad,
Calif.) and characterized for the positive expression of
cell-surface antigens CD31, CD141, CD105, CD144, vWF
and Flk-1, and the negative expression of hematopoietic-cell
surface antigens CD45 and CD14. Single cell colony form-
ing assays were used to characterize their robust prolifera-
tive potential, secondary and tertiary colony formation upon
replating.

V-SMC Differentiation Protocol

Human ESCs were digested with TrypLE (Invitrogen).
Cells were separated into an individual cell suspension using
a 40-um mesh strainer. The individual hESCs were plated
onto collagen-type-IV-coated plates (R&D Systems, Min-
neapolis, Minn.) in a concentration of 5x10* cells/cm.
These cells were cultured in a differentiation medium of
alpha-MEM (Invitrogen) with 10 percent FBS and 0.1 mM
p-mercaptoethanol (Invitrogen) for six days. Media were
changed every day. On day six, differentiated cells were
removed using trypLE, filtered through a 40 pum mesh
strainer (BD Biosciences, San Jose, Calif.), and recultured
onto collagen-type-IV-coated plates in cell concentrations of
1.25%x10* cells/cm? in differentiation medium supplemented
with PDGF-BB (10 ng/ml) and TGF-1 (1 ng/ml) for six
days (both from R&D Systems). Media were changed every
second day.

Real-Time Quantitative RT-PCR

Two-step RT-PCR was performed on hESCs, v-SMCs,
and differentiated SMLCs after six days in the growth-
factor-supplemented differentiation medium. Total RNA
was extracted by using TRIzol (Gibco, Invitrogen), accord-
ing to the manufacturer’s instructions. Total RNA was
quantified by an ultraviolet spectrophotometer, and the
samples were validated for having no DNA contamination.
RNA (1 pg per sample) was subjected to reverse tran-
scriptase using M-MLV (Promega Co., Madison, Wis.) and
oligo(dT) primers (Promega), using the manufacturer’s
instructions. We used TagMan Universal PCR Master Mix
and Gene Expression Assay (Applied Biosystems, Foster
City, Calif.) for COL, FN1, KDR, PDGFRB, NEUROPI-
LIN, SMA, ANG-1, FLT-1, VE-CAD, B-ACTIN, and
HPRT1, according to the manufacturer’s instructions. The
TagMan PCR step was performed with an Applied Biosys-
tems StepOne Real-Time PCR System (Applied Biosys-
tems), following the manufacturer’s instructions. The rela-
tive expression of COL1A1 or FN1 was normalized to the
amount of HPRT1 or f-ACTIN in the same cDNA by using
the standard curve method described by the manufacturer.
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For each primer set, the comparative computerized tomog-
raphy method (Applied Biosystems) was used to calculate
amplification differences between the different samples. The
values for experiments were averaged and graphed with
standard deviations.
Immunofluorescence

After six days in growth-factor-supplemented differentia-
tion medium, hESC-derived SMLCs were fixed using 3.7%
formaldehyde fixative for 15 minutes and washed with
Phosphate buffered saline (PBS). After, cells were permea-
bilized with a solution of 0.1% Triton-X (Sigma) for ten
minutes, washed with PBS, and incubated for one hour with
anti-human SMA (1:200; Dako, Glostrup, Denmark), anti-
human calponin (1:200; Dako), anti-human SM22 (1:200,
Abeam, Cambridge, Mass.), and anti-human SM-MHC
(1:100; Dako). For ECM staining, cells were incubated with
anti-human fibronectin (1:200; Sigma) or anti-human colla-
gen (1:200; Abeam) for one hour. Cells were rinsed twice
with PBS and incubated with anti-mouse IgG Cy3 conjugate
(1:50; Sigma) or anti-rabbit IgG Alexa Fluor 488 conjugate
(1:1000; Molecular Probes, Fugene, Oreg.) for one hour,
rinsed with PBS, and incubated with DAPI (1:1000; Roche
Diagnostics) for ten minutes. Coverslips were rinsed once
more with PBS and mounted with fluorescent mounting
medium (Dako). The immunolabeled cells were examined
using fluorescence microscopy (Olympus BX60; Olympus,
Center Valley, Pa.).
Fluorescence-Activated Cell Sorting (FACS)/Flow Cytom-
etry

After six and twelve days of differentiation, hESC-de-
rived SMLCs cells were treated with 0.25% trypsin for five
minutes, counted, and separated into approximately 2x10°
cells per vial. They were then incubated in either FITC- or
PE-conjugated antigen specific antibodies for VEGFR-2/
KDR, PDGFR-B, a-SMA (R&D systems) for one hour on
ice. For detection of intracellular markers, cells were fixed
with 3.7% formaldehyde for ten minutes and permeabilized
with 0.1% Triton-X for ten minutes prior to incubation with
antibodies. For other SMC markers, mouse anti-human
SMA (1:200), mouse anti-human calponin (1:200), mouse
anti-human SM-MHC (1:10; Dako), and rabbit anti-human
SM22 (1:2000; Abeam) were used. Cells were rinsed with
0.1% bovine serum albumin (BSA), and then incubated in
the anti-mouse IgG FITC conjugate (1:50; Molecular
Probes) or anti-rabbit IgG Alexa Fluor 488 conjugate
(1:1000; Molecular Probes) for one hour. Afterwards, cells
were strained and suspended in 0.1% BSA. All analysis was
done using isotype controls corresponded to each specific
antibody. User guide instructions were followed to complete
the FACS analysis.
Tube Formation Assay on Matrigel

Matrigel (BD Bioscience) was cast into each well of a
p-Slide Angiogenesis (iBidi, Munich, Germany) and
allowed to polymerize inside the incubator for one hour. For
each well, 100,000 cells/cm® of EPCs and hESC-derived
SMLCs were seeded with respective ratios of 100:0, 60:40,
40:60, 20:80, and 0:100 in EGM (PromoCell) supplemented
with 1 ng/ml VEGF 45 (Pierce). Visualization and image
acquisition were performed using an inverted light micro-
scope (Olympus IX50) at time intervals of 12, 24, and 48
hours.
Quantification of CLSs

After 12 hours of culture on Matrigel, the LIVE/DEAD
Viability/Cytotoxicity Kit (Invitrogen) was used to visualize
CLSs, following the manufacturer’s protocol. Briefly, cal-
cein AM dye was diluted in phenol-red-free DMEM (Invit-
rogen) to obtain a final concentration of 2 pM. The con-
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structs were incubated with the dye solution for 30 minutes.
After replacing with fresh phenol-red-free DMEM, CLSs
were visualized using a fluorescent microscope with a 10x
objective lens (Axiovert; Carl Zeiss Inc., Thornwood, N.Y.).
As previously described®®, we analyzed four image fields
per construct from three distinct experiments (n=3) per-
formed in triplicate, using Metamorph software 6.1 (Uni-
versal Imaging Co., Downingtown, Pa.) to quantify and
compare CLSs formed on each substrate.
Spatial Organization of EPCs and SMLCs in CLSs

To analyze the position of EPCs and hESC-derived
SMLCs within the forming CLSs, both cell types were
labeled: EPCs with PKH2 (green) and SMLCs with PKH-26
(red) (Sigma), according to the manufacturer’s protocol.
Briefly, EPCs and differentiated SMLCs suspensions in
diluent C were mixed with PKH2 and PKH-26, respectively,
for five minutes. The staining was stopped by adding Heat
Inactivated-FBS (Globalstem), and the cells were washed
three times with EGM medium (PromoCell) supplemented
with 1 ng/ml VEGF, ¢ (Pierce) and 2% HI-FBS (Global-
stem). The cells were seeded for tube formation assays on
Matrigel (BD Bioscience) in EGM media and cultured for
12 hours. A sequence of z-stack images was obtained using
confocal microscopy (LSM 510 Meta; Carl Zeiss) to deter-
mine the spatial arrangement of the cells in the CLSs.
Functional Contraction Studies

Contraction studies in response to pharmacological drugs
were done, as previously described.'® 22 Briefly, hESC
derived-SMLCs cultured for three passages were washed,
and contraction was induced by incubating with 107> M
carbachol (Calbiochem, Darmstadt, Germany) in DMEM
medium (Invitrogen) for 30 minutes. In a separate experi-
ment, the cells were induced to relax by incubating with
muscarinic antagonist 10~* M atropine (Sigma) in DMEM
for one hour and then induced to contract with 10> M
carbachol. The cells were visualized using cytoplasm-viable
fluorescence dye, as described in the “Quantification of
CLSs” section, above. A series of time-lapse images were
taken using a microscope with a 10x objective lens (Axio-
vert; Carl Zeiss). The cell contraction percentage was cal-
culated by the difference in area covered by the cells before
(at time zero) and after contraction (at time 30 minutes).
Statistical Analysis

We performed statistical analyses of CLS quantification,
fibronectin and collagen production, and contractility data
using GraphPad Prism 4.02 (GraphPad Software Inc., La
Jolla, Calif.). Unpaired Student’s t-tests were performed,
and significance levels were set at *p<0.05, **p<0.01, and
*4%1p<0.001, respectively. No significant difference (p>0.05)
was indicated with #. All graphical data were reported.

Example 11
Results

Derivation of SMLCs from hESCs

Our protocol, which is shown in FIG. 1, efficiently derives
SMLCs from hESCs. At the first stage, to reduce the
pluripotency associated with autocrine signaling, we utilized
TrypLE to ensure a single-cell suspension and decreased cell
seeding concentrations to 2.5x10* cells/cm?. In addition to
supplementation of culture media with 10 ng/ml PDGF-BB,
we added 1 ng/ml TGF-p1.
Characterization of hESC-Derived SMLCs

After 12 days of differentiation, hESC-derived SMLCs
were analyzed for specific v-SMC markers and compared to
human aorta v-SMCs. The chosen markers are proven
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indicators of v-SMC lineage, including a-SMA, an actin
isoform typical of SMCs and present in high amounts in
v-SMCs (Gong et al. (2008) FASEB Journal 22, 1635-48),
calponin, a calcium-binding protein that normally functions
to inhibit ATPase activity in v-SMCs (Sobue et al. (1999)
Molecular and Cellular Biochemistry 264, 18272-5); SM22
alpha, an actin cross-linking/gelling protein that belongs to
the calponin family (Duband et al. (1993) Differentiation 55,
1-11); and SM-MHC, a contractile protein specific for the
SMC lineage (Kuro-o et al. (1989) Journal of Biological
Chemistry 264, 18272-5; Aikawa et al. (1993) Circ Res 107,
2085-8). Human ESC-derived SMICs, like human aorta
v-SMCs, were found to express SMA, calponin, SM22, and
SM-MHC within the cell cytoplasm (data not shown). Flow
cytometry analysis (using indirect labeling) further showed
high expression levels of most markers in hESC-derived
SMLCs, which were comparable to their expression levels
in human aorta v-SMCs—including SMA (99 vs. 98 percent,
respectively), calponin (99 vs. 98 percent, respectively), and
SM22 (98 vs. 90 percent, respectively)—while SM-MHC
was expressed in hESC-derived SMLCs to a lesser extent
than its expression in human aorta v-SMCs (52 vs. 70
percent, respectively) (FIG. 2). To better understand the
kinetics of gene regulation, we further analyzed differenti-
ating cells at day 6 and day 12 for markers known to be
involved in mesodermal/vascular differentiation. It was pre-
viously demonstrated that KDR is expressed in undifferen-
tiated hESCs and continues to be expressed during differ-
entiation associated with embryoid body formation. We
found that using our differentiation protocol, KDR is down-
regulated, as demonstrated by both FACS and qRT-PCR
analyses (FIG. 7A). Other markers related to SMC specifi-
cation are upregulated throughout the differentiation includ-
ing: PDGFR-B, Neuropilin, and SMA, as well as Angiopoi-
etin 1 (Ang-1) production (FIG. 7B-E). We also show that
VE-Cad and FLT-1, which are known to be involved in
endothelial cell commitment, are downregulated along the
SMC lineage commitment (FIG. 7F-G).
ECM Production by hESC-Derived SMLCs

To explore the potential of hESC-derived SMLCs to
support engineered vasculatures, we examined the produc-
tion of the ECM molecules fibronectin and collagen. Real-
time PCR analysis revealed that, compared to undifferenti-
ated hESCs, hESC-derived SMLCs produced 565-fold more
collagen and 52-fold more fibronectin (FIG. 3A). We found
no significant difference in collagen production between
hESC-derived SMLCs and human aorta v-SMCs, while
slightly lower, but significant, expression levels of fibronec-
tin were observed in hESC-derived SMLCs compared to
human aorta v-SMCs (FIG. 3A). It should be noted that
culturing human aorta v-SMCs in differentiation media of
hESC-derived SMLCs resulted in decreased expression of
fibronectin, suggesting an inhibitory effect of differentiation
media compared to v-SMC media (FIG. 8). Immunofluo-
rescence analysis revealed that hESC-derived SMLCs lay
down their own ECM, including fibronectin and collagen
(FIG. 3B). However, unlike human aorta v-SMCs, where
fibrous fibronectin was observed mainly within the cells’
cytoplasm, fibronectin produced by hESC-derived SMLCs
was found both within the cells and outside on the Petri dish
(FIG. 3C), indicating ECM secretion by hESC-derived
SMLCs. No significant differences in the ECM secretion
pattern were observed when human aorta v-SMCs were
cultured in differentiation media (data not shown). Overall,
this data provides insight into the early developmental stage
of hESC-derived SMLCs and their potential to support
developing vasculatures.
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Contraction of hESC-Derived SMLCs

The primary function of v-SMCs is to contract and relax
within the blood vessel wall to maintain its integrity. To
examine whether hESC-derived SMLCs can contract, the
cells were subjected to carbachol, which induces contraction
in v-SMCs, and atropine, which blocks contractility. Human
ESC-derived SMLCs were found to contract in response to
carbachol (107> M), as demonstrated by a series of time-
lapse images. Morphological changes of hESC-derived
SMLCs were clearly observed following treatment with
carbachol, with cytoplasm-viable fluorescence dye showing
shrinkage of contracting cells after treatment (data not
shown), Contraction was quantified by the difference in cell
area between time zero and time 30 minutes. Contractions of
hESC-derived SMLCs were not significantly different than
those of human v-SMCs (FIG. 4). Furthermore, the musca-
rinic antagonist atropine (10~ M) was shown to signifi-
cantly block the carbachol-mediated contractility (FIG. 4).
Human ESC-Derived SMLCs Augmented Capillary-Like
Structure (CLS) Phenotype

Cord-blood-derived hEPCs have been shown to form
functional and stable blood vessels. We previously used
EPCs to study in vitro capillary tube formation induced by
substrate nanotopography and viscoelasticity (Bettinger et
al. (2008) Adv Mater 20, 99-103). Therefore, to study the
ability of hESC-derived SMLCs to support an engineered
vascular network, we examined in vitro formation of CLSs
from cocultures of human EPCs and SMLCs. We seeded
human EPCs and hESC-derived SMLCs at ratios of 100:0,
60:40, 40:60, 20:80, and 0:100 (EPCs:SMLCs) on Matrigel.
After 12 hours, CLS formation was observed in all condi-
tions (FIG. 5A), while SMIL.Cs supported longer and thicker
tubes, with less complex networks (FIG. 5B). Moreover,
SMLCs were found to stabilize and prolong CLS formation
on Matrigel, which otherwise collapsed after 48 hours (FIG.
8). It should be noted that CLSs formed by both EPCs and
SMLCs were found to break down by clumping at around 60
to 72 hours after seeding (data not shown).
Human ESC-Derived SMLCs Coherently Positioned with
EPCs During CLS Formation

To examine whether SMLCs participate in CLS forma-
tion, a series of confocal z-stack analyses was performed on
CLSs formed by EPCs and SMLCs (20:80) which showed
the longest and thickest tubes (FIG. 5). We found that all
CLSs contained both SMLCs and EPCs (FIG. 6A), where,
in most cases, SMLCs were found to wrap the inner lining
EPCs, providing a supportive layer for the developing
network (FIG. 6B).
Discussion

One of the major issues in therapeutic vascularization is
finding a reliable source from which cells can be isolated
with high efficiency, purity, and minimal manipulation. In
addition to the emerging sources of SMCs from MSCs,
adipose tissues, and neural crests, hESCs offer a unique
source of cells for understanding signaling during vascular
development and for therapeutics to treat the vasculature.
Our previous study demonstrated that vascular progenitors
derived from hESCs could be induced to differentiate into
both ECs and SMLCs by exposure to VEGF or PDGF-BB,
respectively (Ferreira et al. (2007) Circ Res 101, 286-94).
This differentiation protocol required sorting of the vascular
progenitors from developing EBs, followed by their seeding
as a monolayer to induce lineage commitment. In the present
application, we built on that protocol to differentiate hESCs
into vascular lineages using a monolayer differentiation
protocol. We utilized this method to better control the
differentiation processes and tuning of the supplemented
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growth factors. We have shown here that when hESCs are
seeded as single cells in a certain cell density on collagen-
IV-coated plates, efficient guidance of their differentiation is
achieved. Without wishing to be bound by any particular
mechanism, it is suggested that this may be due to reduced
autocrine signaling. These adherent cells grew for six days
in differentiation media without growth factor supplemen-
tation to promote lateral mesoderm cell differentiation
(Gerecht-Nir et al. (2003) (supra)). After six days, the cells
were harvested, sorted through a 40-um strainer, and recul-
tured on collagen-IV-coated plates in differentiation media
containing 10 ng/ml PDGF-BB and 1 ng/ml TGF-1 for an
additional six days to induce lineage commitment to
v-SMCs. By the end of 12 days, FACS and immunofluo-
rescence analysis revealed highly purified, differentiated
SMLCs, more than 90% of which expressed levels of
a-SMA, calponin, and SMC-SM22 that were comparable to
levels in human aorta v-SMCs. However, only 52% of these
SMLCs expressed SM-MHC, a mature marker of SMCs,
compared to 70% expression by human aorta v-SMCs. Our
data also indicate that KDR+ cells give rise to these SMI.Cs,
as its expression is downregulated throughout the differen-
tiation period.

Real-time RT-PCR showed that these hESC-derived
SMLCs highly expressed collagen and fibronectin, which
are crucial for SMCs to support vascular development.
SMLCs produced collagen in levels comparable to human
aorta v-SMC while producing fibronectin to a lesser extent
than human aorta v-SMCs. This could be attributed to the
differentiation media, which also yielded reduced expression
of fibronectin in human aorta v-SMCs cultured in this
differentiation media. Interestingly, immunofluorescence
analysis revealed that, in hESC-derived SMLCs, fibrous
fibronectin was located both within the cells and outside the
cells on the Petri dish, indicating that hESC-derived SMLCs
secrete fibronectin to the extracellular space. This favorable
result suggests that hESC-derived SMLCs can be used for
therapeutic vascularization, as SMCs tend to show a
decrease in ECM production as they age. Furthermore,
hESC-derived SMLCs were found to contract in response to
carbachol, while atropine blocks this contraction, a response
similar to that observed in human aorta v-SMCs.

Mature vascular SMCs are highly specialized cells which
can perform both synthetic function, to support blood ves-
sels, and contractile function, to regulate blood pressure.
During early vascular morphogenesis, SMCs and mural cells
are recruited to stabilize the nascent capillary through
cytokine interactions and ECM production. In later stages, in
response to their local environment (i.e., shear stress), these
SMCs acquire a contractile phenotype. Hence, engineering
functional vascular networks requires both phenotypes, syn-
thetic at the early stage of vascular morphogenesis and
contractile at the later stage of vascular stabilization. Here,
we report the derivation of SMLCs from hESCs with
emerging synthetic SMC phenotype and contractility
responsiveness. Together, these results indicate that hESC-
derived SMLCs, although in an early stage of development,
are functional and may be able to support in vitro engineered
vasculature.

To study the ability of hESC-derived SMLCs to support
engineered vascular networks, we examined in vitro forma-
tion of CLSs from cocultures of human EPCs and SMLCs.
As the ratio of EPC to SMLCs decreased, we found that
SMLCs supported longer and thicker tubes, with less com-
plex networks. Moreover, SMLCs were able to stabilize and
prolong CLS formation on Matrigel, which would otherwise
collapse after 48 hours of culture. These results support
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previous observations suggesting that pericytes might sta-
bilize CLSs by altering the EC phenotype to reflect a more
differentiated state. Without wishing to be bound by any
particular mechanism, it is suggested that SMLCs may
stabilize CLSs in vitro by both cytokine interactions and
physical arrangement, by wrapping the inner lining of EPCs,
providing a supportive layer for the developing network.
These in vitro results also agree with previous in vivo studies
where cocultured, differentiated MSCs were shown to sta-
bilize vessel formation of EPCs.

Collectively, these results indicate that the improved
derivation protocol of the invention will lead to highly
purified cultures of hESC-derived SMLCs. Such SMLCs
have early stage v-SMC characteristics, and hESC-derived
SMLCs have the potential to support engineered vascular
networks in vitro and therefore should be considered as a
potential cell source for therapeutic vascularization.

From the foregoing description, one skilled in the art can
easily ascertain the essential characteristics of this invention,
and without departing from the spirit and scope thereof, can
make changes and modifications of the invention to adapt it
to various usage and conditions and to utilize the present
invention to its fullest extent. The preceding preferred
specific embodiments are to be construed as merely illus-
trative, and not limiting of the scope of the invention in any
way whatsoever. The entire disclosure of all applications,
patents, and publications (including provisional patent appli-
cation Provisional Patent Application 61/308,014, filed Feb.
25, 2010) cited above and in the figures are hereby incor-
porated in their entirety by reference, particularly with
regard to the method or finding for which they are cited.

We claim:

1. A method for differentiating human pluripotent stem
cells (hPSCs) into human smooth muscle like cells (SMLCs)
in vitro, comprising

a) plating a single-cell suspension of hPSCs that are
smaller than 50 um at a seeding concentration of about
5%x10* cells/cm>-about 1x10° cells/cm> onto a suitable
surface, and culturing the cells under conditions which
prevent the hPSCs from aggregating and which induce
differentiation of the hPSCs into vasculogenic progeni-
tor cells;

b) harvesting the cultured cells of step a) and separating
them into a single cell suspension of cells that are
smaller than 50 um;

¢) plating the single cell suspension of step b) at a seeding
concentration of about 1x10* cells/cm®-about 5x10*
cells/cm® on a suitable surface, and culturing the cells
in a differentiation medium that is supplemented with
platelet-derived growth factor BB (PDGF-BB) and
transforming growth factor-beta 1 (TGF p1); and

d) stretching the cells from step c¢) by subjecting the cells
to a flow-induced shear stress for a time period suffi-
cient to enhance differentiation, maturation and/or
functionality of the cells

wherein the human SMLCs are characterized by at least
one of up regulated PDGFR-B, up regulated Calponin,
up regulated SMA, up regulated Ang-1, and/or reduced
expression of fibronectin, as compared to human aorta
vascular smooth muscle cells.

2. The method of claim 1, wherein the flow-induced shear

stress applied to the cells from step ¢), is at least 1 dyne/cm?.

3. The method of claim 1, wherein the flow-induced shear
stress is exerted in a flow chamber.

4. The method of claim 1, wherein the hPSCs are human
embryonic stem cells (WESCs).
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5. The method of claim 1, wherein the hPSCs are induced
pluripotent stem cells (iPSCs).

6. The method of claim 5, wherein the iPSCs are human
iPSCs.

7. The method of claim 1, wherein the SMLCs are human
vascular SMLCs.

8. The method of claim 1, wherein the method to generate
single cell suspensions comprises trypsinizing the cells with
TrypLE.

9. The method of claim 1, wherein the single cell sus-
pensions of cells that are smaller than 50 um are generated
by a method comprising sorting the cells through a 40-um
mesh strainer.

10. The method of claim 1, wherein the cells in step a) are
plated at a seeding concentration of about 5x10*.

11. The method of claim 1, wherein the conditions in step
a) that prevent the hPSCs from aggregating and induce
differentiation of the hPSCs into vasculogenic progenitor
cells comprise culturing the cells on an adhesive substrate,
in a differentiation medium that comprises at least about 5%
serum (v/v), for about 5 to 7 days.

12. The method of claim 11, wherein the adhesive sub-
strate is collagen-type-1V coated culture plate.

13. The method of claim 11, wherein the differentiation
medium comprises at least about 10% serum (v/v).

14. The method of claim 1, wherein the cells in steps a)
and c) are cultured as a monolayer.

15. The method of claim 1, wherein the cells in step c) are
plated at a seeding concentration of less than about 2x10*
cells/cm?.

16. The method of claim 1, wherein the cells in step ¢) are
plated at a seeding concentration of about 1.25x10% cells/
cm?.

17. The method of claim 1, wherein in step c), the
concentration of PDGF-BB is about 5 ng/ml-about 50 ng/ml.

18. The method of claim 17, wherein in step c), the
concentration of PDGF-BB is about 5 ng/ml-about 10 ng/ml.

19. The method of claim 1, wherein in step c), the
concentration of TGF-f is about 1 ng/ml-about 10 ng/ml.

20. The method of claim 19, wherein the concentration of
TGF-f is about 1 ng/ml.
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21. The method of claim 1, wherein the cells generated in
step ¢) are subjected to a stress of at least 1 dyne/cm?® for at
least about 48 hours.

22. The method of claim 21, wherein the stress is at least
5 dyne/cm?.

23. The method of claim 21, wherein the stress is at least
10 dyne/cm?.

24. A method for differentiating human embryonic stem
cells (hESCs) into human smooth muscle-like cells (SM-
LCs) in vitro, comprising

a) plating a single-cell suspension of hESCs that have
been filtered through a 40 um strainer, to generate a
population of cells that are smaller than 40 pm, at a
seeding concentration of about 5x10* cells/cm?, onto a
collagen IV coated plate, and culturing the cells in a
differentiation medium that comprises about 10%
serum, for about 6 days,

b) harvesting the cultured cells of step a) and filtering
them through a 40 um strainer to generate a single cell
suspension of cells that are smaller than 40 um;

¢) plating the single cell suspension of step b) at a seeding
concentration of less than about 2x10* cells/cm' on a
collagen IV coated plate, and culturing the cells in a
differentiation medium comprising about 10% (v/v) of
serum and that is supplemented with about 10 ng/ml of
PDGF-BB and about 1 ng/ml of TGF 1, for about 6
days; and

d) stretching the cells from step c¢) by subjecting the cells
to a flow-induced shear stress for at least 48 hours;

wherein the flow-induced shear stress is exerted in a flow
chamber, and

wherein the human SMLCs are characterized by at least
one of up regulated PDGFR-B, up regulated Calponin,
up regulated SMA, up regulated Ang-1, and/or reduced
expression of fibronectin, as compared to human aorta
vascular smooth muscle cells.

25. The method of claim 24, wherein the flow-induced

shear stress is at least 10 dyne/cm?>.
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